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Outline
* Markov Hierarchical Variational Auto Encoders (MHVAEs)

* Autoregressive Encoder and Autoregressive Decoder of an MHVAE
e Derivation of the ELBO of an MHVAE

 Diffusion Models: MHVAEs with a Linear Gaussian Autoregressive Latent Space

* Forward Diffusion Process
e Reverse Diffusion Process
e ELBO for Diffusion Models as a particular case of the ELBO for MHVAEs

* Implementation Details: UNet architecture, Training and Sampling Strategies

* Application of Diffusion Models

* Text-Conditioned Diffusion Model: Stable Diffusion
* Multimodal Control for Consistent Synthesis: ControlNet
* Image Editing: DDIM, P2P



Stable Diffusion

* DDPM operates in pixel space: optimization takes

hundreds of GPU days and inference is expensive. . /’\“SEma,,ﬁca,mp,essio,,‘
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Stable Diffusion performs denoising in the latent 28 8 &
space of powerful pretrained autoencoders. Figure 2. Mustrating perceptual and semantic compression: Most

bits of a digital image correspond to imperceptible details. While
DMs allow to suppress this semantically meaningless information
by minimizing the responsible loss term, gradients (during train-

. . . . ing) and the neural network backbone (training and inference) still
¢ B e n Efl tS Of Sta b I e D |fo S I O n . need to be evaluated on all pixels, leading to superfluous compu-
tations and unnecessarily expensive optimization and inference.

1. Denoising in the latent space enables spatial complexity Wepropose taten difiusion models (LDMs) as an effective gener-

ative model and a separate mild compression stage that only elim-

re d u Ct | onNn an d d eta | | p rese rvat | on. inates imperceptible details. Data and images from [29].

2. Introducing cross-attention layers enables conditional
input such as texts.



Stable Diffusion: Two-Stage Image Synthesis

* (Stage 1) Perceptual Image Compression: The SD framework uses a pre-trained
VAE to map data into a low-dimensional space and back to the pixel space.

* Compared to the high-dimensional pixel space, the low-dimensional latent space
is more suitable for likelihood-based generative models, as

|. it focuses on the important, semantic bits of the data and
Il. trainsin alow dimensional and computationally efficient space.
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Stable Diffusion: Two-Stage Image Synthesis

* (Stage 1) Perceptual Image Compression: The VAE is trained by a combination of
a reconstruction loss and a patch-based adversarial loss.

* It deploys a VQGAN to learn a codebook of context-rich visual parts, whose
composition is modeled with an autoregressive transformer architecture.
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Stable Diffusion: Two-Stage Image Synthesis

* (Stage 2) Denoising Latent Representations: the denoising process happens in
the compressed latent space of Stage 1.

* Recall that DDPM denoises the input in the image space, while the SD performs
denoising for the latent code.

* The forward process deterministically adds T Gaussian noises to the original
latent code z, and the reverse process learns to denoise.
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Stable Diffusion: Two-Stage Image Synthesis

* The neural backbone of SD is a time-conditional U-Net EQ(Zt, t, Ty (y)) trained to
predict the noise to be removed from the latent code z;.

* SD augments the U-Net backbone with the cross-attention mechanism to receive
conditions T4 (y) such as textual prompts or semantic segmentahons
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Stable Diffusion: Two-Stage Image Synthesis

* (Stage 2) Generative Modeling of Latent Representations: denoising happens in
the compressed latent space given by Stage 1.

e Sampling of the latent code
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wherey is the conditioning (e.g., textual prompt, semantic segmentation).

* Generating (decoding) the image is performed using ¥ = D(z,).
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Unconditional Generation

 One can train a SD on a dataset of a visual domain without imposing extra
conditions.

* In this case, the training of SD is similar to DDPM except that SD learns the
denoising in a quantized latent space.

 Exemplary samples are provided from five unconditional stable diffusion
models, each trained on a separate dataset.

CelebAHQ FFHQ LSUN-Churches LSUN-Beds ImageNet




Image Generation Conditioned on Text

Text-to-Image Synthesis on LAION. 1.45B Model.

"An illustration of a ’A painting of a "A watercolor painting of a A shirt with the inscription:

"A zombie in the "An image of an animal
squirrel eating a burger”  chair that looks like an octopus.” “I love generative models!”.

style of Picasso’ half mouse half octopus’  slightly conscious neural network.’

Details of this 1.45B Model
Training: KL-regularized
Text Conditioner: CLIP-like
Dataset: LAION-400M

GENATIVE

CUERAINTVE

MODEL'S!




Hyper-Parameters for Implementation

Task Text-to-Image Layout-to-Image Class-Label-to-Image  Super Resolution  Inpainting  Semantic-Map-to-Image
Dataset LAION Openlmages COCO ImageNet ImageNet Places Landscapes
f 8 4 8 4 4 4 8
z-shape 32x32x4 64x64x3 32x32x4 64 x 64 x 3 64 x 64 x 3 64 x 64 x 3 32x32x4
|Z| - 8192 16384 8192 8192 8192 16384
Diffusion steps 1000 1000 1000 1000 1000 1000 1000
Noise Schedule linear linear linear linear linear linear linear
Model Size 1.45B 306M 345M 395M 169M 215M 215M
Channels 320 128 192 192 160 128 128
Depth 2 2 2 2 2 2 2
Channel Multiplier 1,2,4,4 1,234 1,24 1. 235 1,224 1,4,8 1,4,8
Number of Heads 8 1 1 1 1 1 1
Dropout - - 0.1 - - - -
Batch Size 680 24 48 1200 64 128 48
Iterations 390K 4.4M 170K 178K 860K 360K 360K
Learning Rate 1.0e-4 4.8e-5 4.8e-5 1.0e-4 6.4e-5 1.0e-6 4.8e-5
Conditioning CA CA CA CA concat concat concat
(C)A-resolutions 32,16, 8 32..16. 8 32.16 8 32.16.8 - - -
Embedding Dimension 1280 512 212 a2 - - -
Transformer Depth 1 3 2 1 - - -




Stable Diffusion as the Foundation Model

Representatives of generative vision works that take SD as the backbone:

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

Ben Poole!, Ajay Jain?, Jonathan T. Barron', Ben Mildenhall'
'Google Research, 2UC Berkeley
{pooleb, barron, bmild}@google.com, ajayj@berkeley.edu
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an orangutan making a clay bowl on a throwing wheel*

araccoon astronaut holding his helmet

Y.
x

a corgi taking a selfie*

A4

Michelangelo style statue of dog reading news on a cellphone

a table with dim sum on it”

atiger dressed as a doctor*

aclassic Packard car®

asliced loaf of fresh bread abulldozer clearing away a pile of snow*

RS A&

ablue jay standing on a large basket of rainbow macarons*

2 M Ml

zoomed out view of Tower Bridge made out of gingerbread and candy*  a robot and dinosaur playing chess, high resolution* asquirrel gesturing in front of an easel showing colorful pie charts

Text2Video-Zero:
Text-to-Image Diffusion Models are Zero-Shot Video Generators

Levon Khachatryan'*  Andranik Movsisyan'* Vahram Tadevosyan'* Roberto Henschel*
Zhangyang Wang"? Shant Navasardyan' Humphrey Shi'34
Picsart Al Resarch (PAIR)  2UT Austin *U of Oregon  *UIUC

https://github.com/Picsart-AI-Research/Text2Video-Zero

Text-to-Video generation + pose control: "a bear
dancing on the concrete"

¥ g

Video Instruct-Pix2Pix: "make it Van Gogh Starry Night style" Text-to-Video generation + edge control: "white butterfly"

Zero-1-to-3: Zero-shot One Image to 3D Object
Ruoshi Liu! Rundi Wu! Basile Van Hoorick! Pavel Tokmakov? Sergey Zakharov? Carl Vondrick!

! Columbia University 2 Toyota Research Institute
zerol23.cs.columbia.edu
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SDXL: Improving Latent Diffusion Models for
High-Resolution Image Synthesis

Dustin Podell Zion English Kyle Lacey Andreas Blattmann Tim Dockhorn

Jonas Miiller Joe Penna Robin Rombach

Stability AL, Applied Research

Code: https://github.com/Stability-Al/generative-models Model weights: https://huggingface.co/stabilityai/




Adding Conditional Control to Text-to-Image Diffusion Models

* ControlNet is a neural network architecture that adds spatial conditioning to large
pre-trained text-to-image diffusion models (e.g., Stable Diffusion).

* ControlNet allows users to add conditions like Canny edges or human pose to
control the text-to-image synthesis.

g Conditional Control to Text-to-Image Diffusion Mode

| A H“ i 5
| .mi ﬁ |

Input Canny edge

Input human pose Default “chef in kitchen” “Lincoln statue”



Key Intuitions of ControlNet

e Core idea:

* ControlNet freezes the parameters © of the original generative neural block Fg and
simultaneously clones the block to a trainable copy with parameters 0.

* The trainable copy takes an external conditioning vector ¢ as input.

* Why it works well?

* The locked parameters of a large model preserve the production-ready information with
billions of images, while the trainable copy establishes a flexible learning paradigm for
handling diverse input conditions.
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MLP Layers with Zero Initialization

* The trainable copy is connected to the locked model with zero convolution layers,
denoted Z(-;-).

* Specifically, Z(+; -) is a convolution or MLP layer with both weight and bias

initialized to zeros. .
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Gradient Calculation of A Zero Initialization Layer

* Consider a linear layer with weight W and bias B at spatial position p for channel
index i. Given an input map x € R"%*¢ the forward pass can be written as

Cc

B W, B s = B+ Y 1, W

J

* Each layer is initialized with W = 0 and B = 0. However, the gradient at a point
such that x,,; # 0 need not be zero, allowing for the training of these weights:
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ControlNet for Stable Diffusion

* The ControlNet structure is applied to each
encoder level of the U-Net.

* An analogy with Residual Learning:
Original SD: y = Generator(x)
ControlNet: y = Generator(x) + ControlNet(x, c)
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Does Zero Initialization Help?
* The ablation study indicates that zero initialization is beneficial for ControlNet.
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Training Results

* ControlNet supports conditioning on
multiple modalities.

* Examples: Canny edge, human pose.

(a) Input Canny map (b) W/o CFG (c) W/o CFG-RW  (d) Full (w/o prompt)

Figure 5: Effect of Classifier-Free Guidance (CFG) and the
proposed CFG Resolution Welghtlng (CFG-RW).

‘\?{W‘w ,. 7 [ o ’ w i N _ -
Test 1nput training step 100 step 1000 step 2000

»

“astronaut”

Multiple condition (pose&depth) “boy
SR step ol Step a0 RChEa Figure 6: Composition of multiple conditions. We present

the application to use depth and pose simultaneously.



Hough Lines and User Scribble

Input (Hough Line) Default Automatic Prompt User Prompt

Input (User Scribble) Default Automatic Prompt

“a turtle in river”

——
A

L “an elephant with background in the field”

“a desk in a room” “hacker’s room at night”

User Prompt

“Egyptian elephant sculpture

Figure 10: Controlling Stable Diffusion with Human scribbles. The “automatic prompts” are generated by BLIP based on the default result

Figure 9: Controlling Stable Diffusion with Hough lines (M-LSD). The “automatic prompts” are generated by BLIP based on the default images without using user prompts. These scribbles are from [19].
result images without using user prompts. See also the Appendix for source images for line detection.



“Michael Jackson's concert”

Figure 15: Controlling Stable Diffusion with ADE20K segmentation map. All results are achieved with default prompt. See also the Appendix
for source images for semantic segmentation map extraction.




Conclusion for Lectures in Diffusion Models

* Previous lectures focused on the derivation of Diffusion Models from a VAE
perspective. In this lecture, we introduce two mainstream applications of
Diffusion Models with multimodal conditions:

e Stable Diffusion

* Denoising in the latent space enables spatial complexity reduction and detail preservation.

* Introducing cross-attention layers enables conditional input such as texts.

e ControlNet

* Enabling fine-grained control through versatile conditions (e.g., sketches, outlines,
keypoints)

* Preserving pre-trained model knowledge while extending functionality.



