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Deep Generative Models:
Latent Diffusion Models



• Markov Hierarchical Variational Auto Encoders (MHVAEs)
• Autoregressive Encoder and Autoregressive Decoder of an MHVAE
• Derivation of the ELBO of an MHVAE

• Diffusion Models: MHVAEs with a Linear Gaussian Autoregressive Latent Space
• Forward Diffusion Process
• Reverse Diffusion Process
• ELBO for Diffusion Models as a particular case of the ELBO for MHVAEs

• Implementation Details: UNet architecture, Training and Sampling Strategies

• Application of Diffusion Models 
• Text-Conditioned Diffusion Model: Stable Diffusion
• Multimodal Control for Consistent Synthesis: ControlNet
• Image Editing: DDIM, P2P

Outline



• DDPM operates in pixel space: optimization takes 
hundreds of GPU days and inference is expensive.
• 50k sample takes around 5 days on a single A100 GPU.

• To enable training on limited computational 
resources, while retaining quality and flexibility, 
Stable Diffusion performs denoising in the latent 
space of powerful pretrained autoencoders.

• Benefits of Stable Diffusion:
1. Denoising in the latent space enables spatial complexity 

reduction and detail preservation.
2. Introducing cross-attention layers enables conditional 

input such as texts.

Stable Diffusion



• (Stage 1) Perceptual Image Compression: The SD framework uses a pre-trained 
VAE to map data into a low-dimensional space and back to the pixel space.
• Compared to the high-dimensional pixel space, the low-dimensional latent space 

is more suitable for likelihood-based generative models, as 
I. it focuses on the important, semantic bits of the data and 
II. trains in a low dimensional and computationally efficient space.

Stable Diffusion: Two-Stage Image Synthesis



• (Stage 1) Perceptual Image Compression: The VAE is trained by a combination of 
a reconstruction loss and a patch-based adversarial loss.
• It deploys a VQGAN to learn a codebook of context-rich visual parts, whose 

composition is modeled with an autoregressive transformer architecture.
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Stable Diffusion: Two-Stage Image Synthesis
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• (Stage 2) Denoising Latent Representations: the denoising process happens in 
the compressed latent space of Stage 1.
• Recall that DDPM denoises the input in the image space, while the SD performs 

denoising for the latent code.
• The forward process deterministically adds 𝑇 Gaussian noises to the original 

latent code 𝑧, and the reverse process learns to denoise.

Stable Diffusion: Two-Stage Image Synthesis

Encoder and Decoder 
are from the Stage 1.



• The neural backbone of SD is a Tme-condiTonal U-Net	𝝐! 𝑧!, 𝑡, 𝜏"(y) 	trained to 
predict the noise to be removed from the latent code 𝑧! .
• SD augments the U-Net backbone with the cross-aUenTon mechanism to receive 

condiTons 𝜏"(y) such as textual prompts or semanTc segmentaTons.
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• (Stage 2) Generative Modeling of Latent Representations: denoising happens in 
the compressed latent space given by Stage 1.
• Sampling of the latent code 
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  where	y is the conditioning (e.g., textual prompt, semantic segmentation).
• Generating (decoding) the image is performed using 5𝑥 = 𝐷 𝑧+ .

Stable Diffusion: Two-Stage Image Synthesis



Uncondi=onal Genera=on
• One can train a SD on a dataset of a visual domain without imposing extra 

conditions. 
• In this case, the training of SD is similar to DDPM except that SD learns the 

denoising in a quantized latent space. 
• Exemplary samples are provided from five unconditional stable diffusion 

models, each trained on a separate dataset.  



Image Generation Conditioned on Text

Details of this 1.45B Model
Training: KL-regularized
Text Conditioner: CLIP-like
Dataset: LAION-400M



Hyper-Parameters for Implementation



Stable Diffusion as the Foundation Model
Representatives of generative vision works that take SD as the backbone:



• ControlNet is a neural network architecture that adds spatial conditioning to large 
pre-trained text-to-image diffusion models (e.g., Stable Diffusion).
• ControlNet allows users to add conditions like Canny edges or human pose to 

control the text-to-image synthesis.

Adding Condi)onal Control to Text-to-Image Diffusion Models



• Core idea: 
• ControlNet freezes the parameters Θ of the original generative neural block 𝐹8	and 

simultaneously clones the block to a trainable copy with parameters Θ9.
• The trainable copy takes an external conditioning vector 𝑐 as input. 

• Why it works well?
• The locked parameters of a large model preserve the production-ready information with 

billions of images, while the trainable copy establishes a flexible learning paradigm for 
handling diverse input conditions.

Key Intuitions of ControlNet



• The trainable copy is connected to the locked model with zero convolution layers, 
denoted 𝑍(·;·).	
• Specifically, 𝑍(·;	·)	is a convolution or MLP layer with both weight and bias 

initialized to zeros. 
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MLP Layers with Zero Initialization



• Consider a linear layer with weight 𝑊 and bias 𝐵 at spatial position 𝑝 for channel 
index 𝑖. Given an input map 𝑥 ∈ 𝑅#×%×&, the forward pass can be written as
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• Each layer is initialized with 𝑊 = 0	and 𝐵 = 0. However, the gradient at a point 
such that 𝑥0,1 ≠ 0 need not be zero, allowing for the training of these weights:

𝜕𝒵 𝑥; 𝑊, 𝐵 !,# 
𝜕𝐵#

= 1,

𝜕𝒵 𝑥; 𝑊, 𝐵 !,# 
𝜕𝑥!,#

=	/
$

%

𝑊#,$ = 0

𝜕𝒵 𝑥; 𝑊, 𝐵 !,# 
𝜕𝑊#,$

= 𝑥!,$ ≠ 0

Gradient Calculation of A Zero Initialization Layer



• The ControlNet structure is applied to each 
encoder level of the U-Net. 

• An analogy with Residual Learning:
  Original SD: 𝑦	= Generator(𝑥)
  ControlNet: 𝑦 = Generator(𝑥) + ControlNet(𝑥, 𝑐)

ControlNet for Stable Diffusion

Residual Learning
[He et al., 2015]

ControlNet



Does Zero Initialization Help?
• The ablation study indicates that zero initialization is beneficial for ControlNet.



Training Results
• ControlNet supports conditioning on 

multiple modalities.
• Examples: Canny edge, human pose.



Hough Lines and User Scribble



Segmenta=on and Human Pose



• Previous lectures focused on the derivation of Diffusion Models from a VAE 
perspective. In this lecture, we introduce two mainstream applications of 
Diffusion Models with multimodal conditions:

• Stable Diffusion

• Denoising in the latent space enables spatial complexity reduction and detail preservation.
• Introducing cross-attention layers enables conditional input such as texts.

• ControlNet

• Enabling fine-grained control through versatile conditions (e.g., sketches, outlines, 
keypoints)
• Preserving pre-trained model knowledge while extending functionality.

Conclusion for Lectures in Diffusion Models


